157. Preparation of Enantiomerically Pure β **-Silylcarboxyl Derivatives by Asymmetric 1,4-Addition to N-Enoyl-sultams**

Preliminary Communication¹)

by Wolfgang Oppolzer*, Robert **J. Mills,** Werner Pachinger, and Thomas Stevenson

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

(28.V11.86)

EtAICl₂-promoted additions of organocopper reagents to camphor-derived, conjugated N-enoyl-sultams gave saturated and olefinic β -silylcarboxyl derivatives with high diastereodifferentiation. Nondestructive removal of the chiral auxiliary followed by oxidative Si-C bond cleavage furnished enantiomerically pure acetate-derived aldols and propionate-derived 'anti'-aldols (via silyl-directed α -methylation).

 β -Silylcarbonyl compounds show significant promise in organic synthesis. Two features of the β -SiPhMe, substituent are particularly interesting: 1) its topological bias on α -enolate protonation and methylation [1] as well as 2) its convertibility into a OH group with retention of configuration [2].

In continuation of previous work on asymmetric *Diels-Alder [3]* and hydride additions [4] to conjugated N-acyl-sultams, we report here the first asymmetric synthesis of β -silylcarboxylates and their transformation into enantiomerically pure acetate-derived aldols and propionate-derived 'anti'-aldols. Furthermore, we describe the analogous π -face-selective preparation of γ , δ -alkenyl- β -silylcarboxyl derivatives which offer additional synthetic possibilities *via* S_E2' -type allylsilane substitutions²).

For reasons of versatility, it was advantageous to incorporate the silyl group into the prochiral substrate. The starting $N-[β - (sily)$ enoyl]sultam **1** $(R'=\text{SiPhMe}_2, (Scheme 1)³$ was readily prepared by successive treatment of (E) -3(dimethylphenylsilyl)acrylic acid³)⁴)

') Presented at the IASOC-11-Meeting, Ischia, May **1986.**

²) For an alternative approach to racemic and to enantiomcrically pure γ , δ -alkenyl- β -silylcarbonyl derivatives by Cluisen rearrangements see *[S];* for asymmetric syntheses of non-functionalized allylsilanes, see [6]; for reviews on stereospecific S_E^2 -type substitutions of allylsilanes, see [7].

All new compounds were characterized by IR, 1 H-NMR (360 MHz), and mass spectra. ')

This acid (m.p. **89-91")** was prepared in analogy to 3-(trimethylsilyl)acrylic acid **[8]** by successive treatment of (E) -1,2-bis(tributylstannyl)ethylene [9] at -78° with BuLi, CISiPhMe₂, BuLi, and CO₂. **4,**

$Entry^a)$	R^1	R^2	Lewis acid	Ratio of crude 2/3	Ratio of crystallized 2/3	Yield of crystallized $2 + 3$ [%]
	SiPhMe ₂	Vinyl	$BF_3 \cdot OEt_2$	27:73	3:97	60
\overline{c}	SiPhMe ₂	Vinyl	EtAICl ₂	95:5	98:2	57
3	SiPhMe ₂	(Z) -Prop-1-enyl	EtAICI ₂	98:2	99:1	65
4	SiPhMe,	(E) -prop-1-enyl	EtAIC ₁	98:2	98:2	67
	SiPhMe ₂	Me	EtAICl ₂	93:7	96.7:3.3	61
6	SiPhMe ₂	Et	EtAICI ₂	93:7	96:4	62
	SiPhMe ₂	P_T	EtAIC1	94:6	98:2	57
8	SiPhMe ₂	i Pr	EtAICI ₂	93:7	97:3	64
9	SiPhMe ₂	Bu	EtAICI ₂	95.7:4.3	98.4:1.6	61
10	SiPhMe ₂	Ph	EtAICI ₂	97.4:2.6	100:0	86
$_{II}$	Ph	SiPhMe,	EtA Cl ₂	10.6:90.4	1.5:98.5	43

Table 1. Asymmetric Conjugate Additions $1 + R^2Cu \rightarrow 2 + 3$

with oxalyl chloride and then with the bornane sultam 5 (after deprotonation with NaH) [3]. Tributylphosphine-stabilized organocopper reagents R^2Cu added smoothly to 1 at low temperatures in the presence of a Lewis acid to give a mixture 2/3 of isomers (Scheme 1, Table 1)⁵). Comparison of *Entries 1* and 2 reveals how significantly the stereodifferentiation depends on the nature of the Lewis acid: Conjugate addition of vinylcopper to 1. $(R^1 = \text{SiPhMe}_2)$ proceeded with moderate (46% diastereoisomeric excess (d.e.)) C(β)-Si-face selection when promoted by BF₃ OEt₂ (*Entry 1*), but with 90% $C(\beta)$ -Re-face preference on coordination of 1 with EtAlCl, (Entry 2). In practice, either the (R) -isomer 2 (*Entry 1*) or its (*S*)-epimer 3 (*Entry 2*) were obtained from the same precursor in ca. 60% yield and $> 94\%$ d.e. after crystallization of the crude products.

Mechanistically, we attribute *(Scheme 2)* this striking difference in sense and extent of induction to a BF₃-monocoordinated transition state A with anti-disposed SO₂/C=O groups (*Entry 1*) and, alternatively, to the Al-chelated transition state **B** (*Entry 2*). Shielding of the olefinic top face is less pronounced in A than in B consistent with the higher stereoface differentiation (favoring bottom-side attack) observed in *Entry 2*. A

 $5₁$ For asymmetric conjugate additions of RCu·BF₃·Bu₃P to sulfonamide-shielded enoates, see [10]. The starting organolithium reagents were prepared by metalation of the corresponding bromides (for (E) - and (Z) -prop-1-enyl bromides, see [11]) with Li [10]. Usually, sultam 1 was added slowly to a 1:1:1 mixture of RLi, CuI · Bu₃P, and EtAlCl₂ (10 equiv.) at -78° . In *Entry 3*, RLi, CuI · Bu₃P (1:1-mixture; 5 equiv.) was transferred by Ar pressure into a stirred solution of 1/EtAlCl₂ 1:10 at -78° . Stirring 2 h at -78° , quenching with aq. NH₄Cl solution at -60° , GC of the crude mixture followed by removal of Bu₃P by chromatography, and crystallization (hexane) gave adducts 2 or 3.

variety of alkenyl- and alkylcopper reagents (Table *I,* Entries *3-10)* underwent conjugate additions to 1 (R' =SiPhMe₂) with 86 to 96% C(β)-Re-face predominance in agreement with the proposed transition state **B;** after crystallization, the adducts **2** were obtained in 92 to *ca.* 100% d.e. *Entries 10* and *I1* illustrate the possibility to direct the developing configuration at $C(\beta)$ by alternation of R¹ and R². Whereas PhCu addition to the N -[(silyl)enoyl]sultam **1** $(R¹ =$ SiPhMe₂) afforded **2** $(R=Ph)$, its epimer **3** $(R=Ph)$ was formed on addition of SiPhMe₂Cu⁶) to the N-[(phenyl)enoyl]sultam **1** (R^1 =Ph). In the latter case, the diastereoisomeric excess (80% d.e.) was less prominent but could be raised to 97% d.e. by subsequent crystallization.

Table 2. *Oxidative C, Si-Bond Cleavage* 2-4-6

The depicted extent and direction of diastereoface differentiation was assigned by direct **GC** analyses of the 1,4-adducts **2** and **3')** and by comparing relevant properties (vide injra) of the aldols **6** derived from **2** *(Scheme 3).* Prior to transforming the SiPhMe, group into a OH function, the sultam auxiliary *5* was non-destructively removed (84 to 96% yield) from **2** mild hydrolysis (LiOH, aq. THF, 25"); esterification of the resulting carboxylic acids with diazomethane furnished methyl esters 4^3). Following the procedure of *Kumada* et *al.* [2a] the silyl-substituted esters 4 were converted into aldols **6')** by successive protodesilylation (HBF,) and oxidation *(m* -chloroperbenzoic acid, KF, DMF). Comparing aldols **6** with their racemates by means of 'H-NMR measurements in the presence of the chiral shift reagent Eu(hfc), $[13]$ revealed enantiomeric purities above 92% e.e. All aldols **6** showed a predominance of the high-field over the low-field CH,O signal in accord

^{6,} Analogous addition of 1 (\mathbb{R}^1 = PH) to 10 equiv. of PhMe,SiLi [12], CuI·Bu₃P, and EtAlCl, in Et₂O at -120^o.

^{&#}x27;) The olefinic adducts 2 of *Entry* **2** and *3* were identified *via* hydrogenation to the products **of** *Entry* 6 (*Wilkinsons's* catalyst) and 7 (Pd/C), respectively.

") See *Entry* **4** of *Table* **2.**

with the depicted absolute configuration which is also consistent with the $[\alpha]_D^{23,4^*}$ value for 6 (R=Ph) of -18.4° (EtOH, $c=2.09$; [14]: -17.9°). The thus assigned configurations of 6 correlate to those of **2** accounting for stereochemical retention in the oxidative Si-Cbond cleavage $4\rightarrow 6$.

Having generated enantioselectively a β -silylated center in 4, it was interesting to exploit its inductive effect on α -alkylation, previously described by *Fleming et al.* [1].

Treatment of 4 $(R=Ph)$ with LiN(i-Pr), at -78° , then with MeI at -90° , and chromatographic removal of the very minor (3%) 'syn'-isomer afforded the expected α methylated 'anti'-isomer 7 in 72% yield. Oxidative Si-C-bond cleavage of 7 furnished pure (GC) 'anti'-aldol 8 in more than 98% e.e. (1 H-NMR in the presence of Eu(hfc),) [13].

Extensions of this new route to enantiomerically pure β -silylcarboxyl derivatives, involving stereospecific allylic substitutions of the silyl group, are presently under investigation.

Financiel support of this work by the *Swiss National Science Foundation, Sandoz Ltd.,* Basel, and *Givuudun SA*, Vernier, is gratefully acknowledged. We also thank Mr. J.P. Saulnier, Mr. A. Pinto and Mrs. D. Clément for NMR and MS measurements.

REFERENCES

- [I] W. Bernhard, 1. Fleming, D. Waterson, *J. Chem. Soc., Chem. Commun.* **1984, 28;** H.-F. Chow, **1.** Fleming, *Tetrahedron Lett.* **1985,26, 397.**
- [2] a) K. Tamao, T. Kakui, **M.** Akita, T. Iwahara, R. Kanatani, **J.** Yoshida, M. Kumada, *Tetrahedron* **1983,** *39,* **983;** b) **I.** Fleming, R. Henning, H. Plaut, *J. Chem.* Soc., *Chem. Commun.* **1984, 29.**
- [3] **W.** Oppolzer, C. Chapuis, G. Bernardinelli, *tfelu. Chim. Acta* **1984,** 67, **1397;** M. Vandewalle, J. Van der Eycken, **W.** Oppolzer, C. Vullioud, *Tetrahedron* **1986,42.4035.**
- **[4]** W. Oppolzer, R. J. Mills, M. Rtglier, *Tetrahedron Lett.* **1986, 27, 183;** W. Oppolzer, G. Poli, *ihid.,* in **press.**
- *[5]* P. R. Jenkins, R. Gut, H. Wetter, **A.** Eschenmoser, *Helu. Chim. Acta* **1979,62, 1922; K.** Mikami, T. Maeda, N. Kishi, T. Nakai, *Tetrahedron Lett.* **1984, 25,** *5* I5 I.
- **[6]** T. Hayashi, M. Konishi, H. Ito, M. Kumdda, *J. Am. Chem. Soc.* **1982, 104, 4962.**
- [7] T.H. Chan, I. Fleming, *Synthesis* **1979, 761;** H. Sakurai, *Pure Appl. Chem.* **1982, 54,l; 1.** Fleming, N.K. Terrett, *ibid.* **1983,55,** 1707.
- **[8]** R. F. Cunico, F. **J.** Clayton, *J. Org. Chem.* **1976, 41, 1480.**
- **[9]** J. C. Bottaro, R. N. Hanson, D. E. Seitz, *J. Org. Chem.* **1981,46,** 5221.
- [lo] **W.** Oppolzer, P. Dudfield, T. Stevenson, T. Godel, *Helu. Chim. Acta* **1985,** *68,* 212.
- [I I] G. M. Whitesides, C. P. Casey, J. K. Krieger, *J. Am. Chem. Soc.* **1971,** *93,* **1379.**
- **[I21 I.** Fleming, T. W. Newton, *J. Chem. Soc., Perkin Trans. I* **1984, 1805.**
- **[I31** A.I. Meyers, **Y.** Yamamoto, *J. Am. Chem. Soc.* **1981,103,4279.**
- **[I41** G. Helmchen, U. Leikauf, **1.** Taufer-Knopfel, *Angew. Chem.* **1985,** 97, **874;** *ibid. Int. Ed.* **1985, 24, 874.**