
1542 HELV~TICA CHIMICA ACTA - Vol. 69 (1986) 

157. Preparation of Enantiomerically Pure /l-Silylcarboxyl Derivatives by 
Asymmetric 1,4-Addition to N-Enoyl-sultams 

Preliminary Communication ’ ) 
by Wolfgang Oppolzer*, Robert J. Mills, Werner Pachinger, and Thomas Stevenson 

Department de Chimie Organique, Universite de Gen&ve, CH-1211 Geneve 4 

(28.V11.86) 

EtAIC1,-promoted additions of organocopper reagents to camphor-derived, conjugated N-enoyl-sultams 
gave saturated and olefinic P-silylcarboxyl derivatives with high diastereodifferentiation. Nondestructive removal 
of the chiral auxiliary followed by oxidative Si-C bond cleavage furnished enantiomerically pure acetate-derived 
aldols and propionate-derived ‘unfi’-aldols (oirr silyl-directed a methylation). 

P-Silylcarbonyl compounds show significant promise in organic synthesis. Two fea- 
tures of the P-SiPhMe, substituent are particularly interesting: 1 j its topological bias on 
a-enolate protonation and methylation [l] as well as 2) its convertibility into a OH group 
with retention of configuration [2]. 

In continuation of previous work on asymmetric Diels-Alder [3] and hydride addi- 
tions [4] to conjugated N-acyl-sultams, we report here the first asymmetric synthesis of 
p-silylcarboxylates and their transformation into enantiomerically pure acetate-derived 
aldols and propionate-derived ‘anti’-aldols. Furthermore, we describe the analogous 

-face-selective preparation of y,6-alkenyl-,8-silylcarboxyl derivatives which offer addi- 
tional synthetic possibilities via SET -type allylsilane substitutions2). 

For reasons of versatility, it was advantageous to incorporate the silyl group into the 
prochiral substrate. The starting N-1/3-(silyl)enoyl]sultam 1 (R’=SiPhMe,, (Scheme 
was readily prepared by successive treatment of ( E  j-3(dimethylphenylsilyl)acrylic 
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Presented at the IASOC-11-Meeting, Ischia, May 1986. 
For an alternative approach to racemic and to enantiomcrically pure ~,fi-alkenyl-B-silylcarbonyl derivatives 
by Cluisen rearrangements see [ S ] ;  for asymmetric syntheses of non-functionalized allylsilanes, see [6]; for 
revicws on stercospecific SE2’-type substitutions of allylsilanes, see [7]. 
All new compounds were characterized by IR, ‘H-NMR (360 MHL), and mass spectra. 
This acid (m.p. 89-91”) was prepared in analogy to 3-(trimethylsilyl)acrylic acid [8] by successive treatment of 
( E l  -1,2-bis(tributylstannyl)ethylene [9] at -78” with BuLi, CISiPhMc,, BuLi, and CO,. 
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Table 1.  Asymmetric Coniunuce Adn'rtiuns 1 + R'Cu-2 + 3 

Entry") R' R2 Lewis Ratio Ratio of Yield of 
acid of crude crystallized crystallized 

213 2/3 2+3r%i 

I 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 

SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
SiPhMe, 
Ph 

Vinyl 
Vinyl 
(2)-Prop- I-enyl 
(E)-prop- I-enyl 
Me 
Et 
Pr 
i Pr 
B U  
Ph 
SiPhMe, 

BF,.OEt, 
EtAlCI, 
EtAICI, 
EtAIC1, 

EtAICI, 

EtAICI, 

EtAICI, 

EtA1CI2 

EtAIC12 
E t A I C I , 
EtAICI, 

27173 
95:s 
Y8:2 
98:2 
Y3:7 
9317 
94% 
Y3:7 

Y5.7:4.3 
Y7.4:2.6 
10.6:90.4 

3:Y7 
98:2 
9Y:l 
98:2 

Y6.7:3.3 
96:4 
Y8:2 
9 7 3  

Y8.4:1.6 
1oo:o 
1.5:Y8.5 

60 
57 
65 
67 
61 
62 
57 
64 
61 
86 
43 

") Entries 1-10:  R = R2; Entry 11:  R = R' .  Entries 1 4 :  Et,O/THF 8.1; EnrriesS-11: Et,O 

with oxalyl chloride and then with the bornane sultam 5 (after deprotonation with NaH) 
[ 3 ] .  Tributylphosphine-stabilized organocopper reagents R'Cu added smoothly to 1 at 
low temperatures in the presence of a Lewis acid to give a mixture 2/3 of isomers 
(Scheme I ,  Table I ) ' ) .  Comparison of Entries 1 and 2 reveals how significantly the 
stereodifferentiation depends on the nature of the Lewis acid: Conjugate addition of 
vinylcopper to 1. (R'=SiPhMe,) proceeded with moderate (46% diastereoisomeric excess 
(d.e.)) C@)-Si-face selection when promoted by BF, . OEt, (Entry I ) ,  but with 90% 
C(J)-Re -face preference on coordination of 1 with EtAlCl, (Entry 2). In practice, either 
the (R)-isomer 2 (Entry I )  or its (S)-epimer 3 (Entry 2) were obtained from the same 
precursor in ca. 60% yield and > 94% d.e. after crystallization of the crude products. 

Mechanistically, we attribute (Scheme 2) this striking difference in sense and extent 
of induction to a BF,-monocoordinated transition state A with anti-disposed SO,/C=O 
groups (Entry I )  and, alternatively, to the Al-chelated transition state B (Entry 2). 
Shielding of the olefinic top face is less pronounced in A than in B consistent with the 
higher stereoface differentiation (favoring bottom-side attack) observed in Entry 2. A 

Scheme 2 

EtCI, 
B A 

For asymmetric conjugate additions of RCu. BF, . Bu3P to sulfonamide-shielded enoates, see [lo]. The starting 
organolithium reagents were prepared by metalation of the corresponding bromides (for ( E )  - and (2) -prop- 
I-enyl bromides, see [ I l l )  with Li [lo]. Usually, sultam 1 was added slowly to a 1:1:1 mixture of RLi, 
CuI. Bu3P, and EtAlCl, (I0 equiv.) at -78". In Entry 3, RLi, CuI . Bu,P (1 : I-mixture; 5 equiv.) was transferred 
by Ar pressure into a stirred solution of l/EtAICI, 1.10 at -78". Stirring 2 h at -78", quenching with aq. 
NH,CI solution at -60", GC of the crude mixture followed by removal of Ru,P by chromatography, and 
crystallization (hexane) gave adducts 2 or 3. 
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variety of alkenyl- and alkylcopper reagents (Table I ,  Entries 3-10) underwent conjugate 
additions to 1 (R'=SiPhMe,) with 86 to 96% Cu)-Re-face predominance in agreement 
with the proposed transition state B; after crystallization, the adducts 2 were obtained in 
92 to ca. 100% d.e. Entries 10 and I 1  illustrate the possibility to direct the developing 
configuration at Cw) by alternation of R'  and R2. Whereas PhCu addition to the 
N-[(silyl)enoyl]sultam 1 (R' =SiPhMe,) afforded 2 (R=Ph), its epimer 3 (R=Ph) was 
formed on addition of SiPhMe,Cuh) to the N-[(phenyl)enoyl]sultam 1 (R' =Ph). In the 
latter case, the diastereoisomeric excess (80 YO d.e.) was less prominent but could be raised 
to 97 YO d.e. by subsequent crystallization. 

Scheme 3 

0 Li OH ,W .TH F 
@ CH,F 

- 
SiPhMe, 

2 

111 HRFl 

4 6 

5 

Table 2. Oxidative C,  Si-Bond Cleavage 2-4-6 

Entry R Yield [ %] Yield ["A] e.e. of aldol 6 [YO] 
2+4 4+6 

1 Et 84 
2 Pr 81 
3 Bu 66 
4 Ph 91 

30 > 98 
83 92 
71 94 
84 > 98 

The depicted extent and direction of diastereoface differentiation was assigned by 
direct GC analyses of the 1,4-adducts 2 and 3') and by comparing relevant properties 
(vide injra) of the aldols 6 derived from 2 (Scheme 3).  Prior to transforming the SiPhMe, 
group into a OH function, the sultam auxiliary 5 was non-destructively removed (84 to 
96% yield) from 2 mild hydrolysis (LiOH, aq. THF, 25"); esterification of the resulting 
carboxylicacidswith diazomethane furnishedmethyl esters4'). Following the procedure of 
Kumada et al. [2a] the silyl-substituted esters 4 were converted into aldols 6') by successive 
protodesilylation (HBF,) and oxidation (m  -chloroperbenzoic acid, KF, DMF). Compar- 
ing aldols 6 with their racemates by means of 'H-NMR measurements in the presence of 
the chiral shift reagent Eu(hfc), [ 131 revealed enantiomeric purities above 92 YO e.e. All 
aldols 6 showed a predominance of the high-field over the low-field CH,O signal in accord 

6, 

') 
Analogous addition of 1 (R' = PH) to 10 equiv. of PhMe,SiLi [12], CuI.Bu3P, and EtAlCl, in Et20 at -120". 
The olefinic adducts 2 of Entry 2 and 3 were identified via hydrogenation to the products of Entry 6 
( WiNtinsons's catalyst) and 7 (Pd/C), respectively. 
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Cl a HBF, rn CIC,H,COOH M.,-,* 

84% 

8 - 
> 98% e.  e.  ant 1 / s m  Y l e l d  X 98%e e crude chrom chrom 

97 :3  100 72 

") See Entry 4 of Table 2. 

with the depicted absolute configuration which is also consistent with the [a]g 4' value for 
6 (R=Ph) of -18.4" (EtOH, c=2.09; [14]: -17.9"). The thus assigned configurations o f 6  
correlate to those of 2 accounting for stereochemical retention in the oxidative Si-C- 
bond cleavage 4+6. 

Having generated enantioselectively a P-silylated center in 4, it was interesting to 
exploit its inductive effect on a-alkylation, previously described by Fleming et al. [l]. 

Treatment of 4 (R=Ph) with LiN(i-Pr), at -78", then with Me1 at -90", and chro- 
matographic removal of the very minor ( 3  YO) ',~yn'-isomer afforded the expected a -  
methylated 'anti'-isomer 7 in 72 YO yield. Oxidative Si-C-bond cleavage of 7 furnished 
pure (GC) 'unti'-aldol8 in more than 98 % e.e. ('H-NMR in the presence of Eu(hfc),) [13]. 

Extensions of this new route to enantiomerically pure P-silylcarboxyl derivatives, 
involving stereospecific allylic substitutions of the silyl group, are presently under investi- 
gation. 
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